
Uporaba mikrokontrolerjev
Namen vaje
Spoznati osnove delovanja mikrokontrolerjev: principi programiranja, zbirni jezik,
osnovni digitalni vhod/izhod, prekinitve. Zapisali bomo nekaj predstavitvenih programov
v mikrokontrolerjev spomin in preizkusili njihovo delovanje na primeru Atmelovega
ATMEGA328p.

Mikrokontrolerji
Mikrokontrolerji so vezja, ki opravljajo odločitve v našem električnem vezju. Njihova
naloga je, da se ustrezno odzivajo na dane signale, ki so lahko zunanjega izvora ali
notranjega. Z njimi opravljamo vsa dela, za katera bi bila osnovna konstrukcija iz
enostavnejših komponent prezahtevna ali predraga.

Od klasičnih mikroprocesorjev se razlikujejo v tem, da imajo integriran trajni in delovni
spomin. Tipično vsebujejo tudi notranji oscilator, ki lahko daje uro centralni procesni
enoti. Poleg naštetega pa lahko vsebujejo tudi časovnik (timer), analogno­digitalni
pretvornik (ADC), komunikacijske module (največkrat UART in I2C, lahko pa tudi CAN,
USB …), pulzno modulacijske izhode (PWM) … Klasični mikroprocesorji vsega tega ne
vsebujejo. Je pa res, da je v zadnjem času s pojavom integriranih sistemov SOC (system
on chip), ki so se uveljavili predvsem v manjših pametnih napravah (telefoni, tablični
računalniki, nekateri manjši računalniki …), ta meja nekoliko zabrisana. Nič hudega, če
vam kakšen od omenjenih pojmov še ni domač; pomembnejše bomo podrobneje spoznali v
vaji.

Strojni jezik
Mikrokontroler deluje tako, da pobira zaporedje bytov iz svojega programskega
pomnilnika. Vsak byte pomeni neki ukaz, ki ga nato mikrokontroler izvrši. Delovanje
mikrokontrolerjev si bomo ogledali na konkretnem primeru Atmelovega ATMEGA328p,
ki sodi v družino AVR mikrokontrolerjev (poleg PIC sodi med popularnejše arhitekture).

AVR arhitektura ima tako kot večina mikrokontrolerjev ločen programski in delovni
spomin (takim sistemom pravimo Harvardska arhitektura) za razliko od računalnikov,
kjer je ta spomin fizično isti. Program je trajno zapisan v flash pomnilniku
(ATMEGA328p ga ima 32kB), medtem ko tekoči program uporablja SRAM pomnilnik
(2kB v našem primeru). Čeprav se morda v časih, ko imajo računalniki 8GB delovnega
spomina in 1TB SSD diska, zdijo omenjene kapacitete zelo nizke, v veliki večini primerov
krepko presegajo zahteve za tipična opravila, za katera so sprogramirani. Tako
konstrukcijo seveda narekuje narava mikrokontrolerja, saj ga sprogramiramo samo
enkrat.

Drawing 1: Postavitev signalov na mikrokontrolerju ATMEGA328p

Poglejmo si na primer zaporedje bytov 0x01E005B8 (predpona 0x je v več programskih
jezikih oznaka za šestnajstiški zapis števila). Takšno zaporedje bytov bo postavilo vse PB
izhode (glej sliko 1) na nizek logični nivo razen izhoda PB0, ki ga bo postavilo na visok
logični nivo.

Pisanje programov z zaporedjem številk je zelo zahtevno opravilo. Poleg tega je človeku
neberljivo in razvozlavanje zaporedja zahteva precejšen napor. Zato si pomagamo z
zbirnikom (assembler). Zbirnik (tudi zbirni jezik) je zbirka mnemonik za vsak ukaz, ki ga
procesor razume. Tako se npr. sledeči program

LDI R0,1

OUT 5,R0

prevede na isto zaporedje bytov (zaporedje generira računalniški program iz izvorne
kode) kot prej 0x01E005B8. Kljub temu je zgornjo kodo lažje razumeti. Ukaz LDI je
kratica za Load Immediate. To pomeni, da bomo dani register R0 napolnili z vrednostjo 1.
Registre lahko razumemo kot delovne spremenljivke procesorja. Drugi ukaz OUT pa
pomeni, da bomo na dano lokacijo 5 (Atmel tudi te lokacije imenuje registri, zato lahko
prihaja do občasne zmede) zapisali vrednost registra R0. Da bi polno razumeli ta ukaz,
moramo vedeti, kaj se nahaja na tej lokaciji. V našem primeru se tam nahaja register
PORTB, ki definira, kakšne vrednosti bomo imeli na izhodih od PB0 do PB7.

Kdor je vajen programiranja, se bo morda vprašal, zakaj nismo direktno na lokacijo 5

vpisali vrednosti 1 z ukazom

OUT 5,1 .

Izkaže se, da takega ukaza ni v naboru. Vidimo torej, da smo za razliko od klasičnih
programov pri zbirniku omejeni na nabor argumentov, ki jih lahko podamo posameznemu
ukazu.
Sicer pa je tudi programiranje v zbirniku precej nehvaležno opravilo (ki pa je včasih
nujno potrebno), zato si raje pomagamo s kakšnim višjim programskim jezikom. Za
mikrokontrolerje največkrat uporabimo jezik C (navadni, ne kakšne njegove izpeljanke
kot sta C++ in C#). Tako bi se isto zaporedje v C zapisalo

PORTB=1; .

Model semaforja
Za začetek bomo naš mikrokontroler povezali tako, da bo deloval kot semafor. Rdečo luč
bomo povezali na PB0, rumeno na PB1 in zeleno na PB2. Stanje na izhodu definiramo z
registrom PORTB. Register DDRB pa nam določa, ali je določena povezava vhod ali izhod.
V mikorkontroler bomo zapisali sledeči program:
/* PORTB, DDRB in ostali so definirani tu */

#include <avr/io.h>

/* potrebujemo za _delay_ms */

#include <util/delay.h>

int main() {

 /* n bo štel sekunde od za?etka cikla */

 int n;

 /* PB2, PB1 in PB0 bodo uporabljeni kot izhod, ostali PB kot vhod */

 DDRB=(1<<PB2)|(1<<PB1)|(1<<PB0);

 PORTB=0;

 /* Poganjamo v nedogled */

 while (1) {

 /* cikel naj traja 2 minuti */

 for (n=0; n<120; n++) {

 /* Na za?etku prižgemo rde?o lu?*/

 /*(in izklopimo rumeno iz prejšnjega cikla) */

 if (n==0) {

 PORTB&=~(1<<PB1);

 PORTB|=1<<PB0;

 }

 /* po eni minuti še rumeno */

 if (n==60) PORTB|=1<<PB1;

 /* po dveh sekundah izklopimo rde?o in rumeno in */

 /* vklopimo zeleno */

 if (n==62) {

 PORTB&=~((1<<PB1)|(1<<PB0));

 PORTB|=1<<PB2;

 }

 /* zadnjih 5s vklopimo rumeno */

 if (n==115) {

 PORTB&=~(1<<PB2);

 PORTB|=1<<PB1;

 }

 /* po?akamo 1s */

 _delay_ms(1000);

 }

 }

}

Tipka za interventna vozila
Naslednji program bo služil kot prikaz branja vhoda. Na PB3 bomo priklopili tipko za
interventna vozila, ki bo na semaforju nemudoma prižgala rdečo luč in omogočila prehod
interventnim vozilom. Nekako intuitivno bi bilo pričakovati, da bomo stanje na PB3
prebrali z registra PORTB. Vendar so se Atmelovi inženirji odločili drugače. Vrednosti
vhodov beremo na registru PINB, PORTB pa služi za morebitno vezavo vhodov z visokim
nivojem preko upornika (pull­up resistor). Dodali bomo sledečo vrstico na začetek zanke
 /* ?e je pritisnjena tipka, za?ni cikel na novo (z rde?o) */

 if (!(PINB&(1<<PB3))) n=0;

poleg tega pa bomo PORTB inicializirali na
 PORTB=1<<PB3;

Preveri delovanje semaforja, poišči napako in jo odpravi. Opiši spremembo.

Koliko časa sveti zelena luč? Skrajšaj ta čas na 30s. Opiši spremembo.

