Uporaba mikrokontrolerjev

Namen vaje
Spoznati osnove delovanja mikrokontrolerjev: principi programiranja, zbirni jezik,
osnovni digitalni vhod/izhod, prekinitve. Zapisali bomo nekaj predstavitvenih programov

v mikrokontrolerjev spomin in preizkusili njihovo delovanje na primeru Atmelovega
ATMEGA328p.

Mikrokontrolerji

Mikrokontrolerji so vezja, ki opravljajo odlo¢itve v nasem elektriénem vezju. Njihova
naloga je, da se ustrezno odzivajo na dane signale, ki so lahko zunanjega izvora ali
notranjega. Z njimi opravljamo vsa dela, za katera bi bila osnovna konstrukcija iz
enostavnejsih komponent prezahtevna ali predraga.

Od klasi¢énih mikroprocesorjev se razlikujejo v tem, da imajo integriran trajni in delovni
spomin. Tipi¢no vsebujejo tudi notranji oscilator, ki lahko daje uro centralni procesni
enoti. Poleg nastetega pa lahko vsebujejo tudi ¢asovnik (timer), analogno-digitalni
pretvornik (ADC), komunikacijske module (najveckrat UART in I12C, lahko pa tudi CAN,
USB ...), pulzno modulacijske izhode (PWM) ... Klasi¢ni mikroprocesorji vsega tega ne
vsebujejo. Je pa res, da je v zadnjem casu s pojavom integriranih sistemov SOC (system
on chip), ki so se uveljavili predvsem v manj$ih pametnih napravah (telefoni, tabli¢ni
rac¢unalniki, nekateri manjsi racunalniki ...), ta meja nekoliko zabrisana. Ni¢ hudega, ¢e
vam kak$en od omenjenih pojmov Se ni domac; pomembnejse bomo podrobneje spoznali v
vaji.

Strojni jezik

Mikrokontroler deluje tako, da pobira zaporedje bytov iz svojega programskega
pomnilnika. Vsak byte pomeni neki ukaz, ki ga nato mikrokontroler izvrsi. Delovanje
mikrokontrolerjev si bomo ogledali na konkretnem primeru Atmelovega ATMEGAS328p,
ki sodi v druzino AVR mikrokontrolerjev (poleg PIC sodi med popularnejse arhitekture).

AVR arhitektura ima tako kot ve¢ina mikrokontrolerjev lo¢en programski in delovni
spomin (takim sistemom pravimo Harvardska arhitektura) za razliko od rac¢unalnikov,
kjer je ta spomin fizi¢no isti. Program je trajno zapisan v flash pomnilniku
(ATMEGA328p ga ima 32kB), medtem ko teko¢i program uporablja SRAM pomnilnik
(2kB v nagem primeru). Ceprav se morda v &asih, ko imajo racunalniki 8GB delovnega
spomina in 1TB SSD diska, zdijo omenjene kapacitete zelo nizke, v veliki ve¢ini primerov
krepko presegajo zahteve za tipicna opravila, za katera so sprogramirani. Tako
konstrukcijo seveda narekuje narava mikrokontrolerja, saj ga sprogramiramo samo
enkrat.

7

(PCINT14/RESET) PC6] 1 28 (O PC5 (ADCS5/SCL/PCINT13)
(PCINT16/RXD) PDO [2 27 1 PC4 (ADC4/SDA/PCINT12)
(PCINT17/TXD) PD1 O 3 26 (1 PC3 (ADC3/PCINT11)
(PCINT18/INTO) PD2] 4 250 PC2 (ADC2/PCINT10)

(PCINT19/0C2B/INT1) PD3 [5 24 (1PC1 (ADC1/PCINT9)

(PCINT20/XCK/TO) PD4 O 6 23 [0 PCO (ADCO/PCINTS)

vec g7 22 1 GND
GND[]8 21 JAREF
(PCINTE/XTAL1/TOSC1) PBE 9 20 O AVCC

(PCINT7/XTAL2/TOSC2) PB7 [J
(PCINT21/0C0B/T1) PD5 O
(PCINT22/0OC0A/AINO) PD6 O
(PCINT23/AIN1) PD7 [
(PCINTO/CLKO/ICP1) PBO O

jum]

19 [1 PB5 (SCK/PCINTS5)

18 O PB4 (MISO/PCINT4)

17 O PB3 (MOSI/OC2A/PCINT3)
16 [1 PB2 (SS/OC1B/PCINTZ2)
15 O PB1 (OC1A/PCINT1)

PRI T

Drawing 1: Postavitev signalov na mikrokontrolerju ATMEGA328p

Poglejmo si na primer zaporedje bytov 0x01E005B8 (predpona 0x je v ve¢ programskih
jezikih oznaka za Sestnajstiski zapis Stevila). Taks$no zaporedje bytov bo postavilo vse PB
izhode (glej sliko 1) na nizek logiéni nivo razen izhoda PBO, ki ga bo postavilo na visok
logiéni nivo.

Pisanje programov z zaporedjem Stevilk je zelo zahtevno opravilo. Poleg tega je ¢loveku
neberljivo in razvozlavanje zaporedja zahteva precejSen napor. Zato si pomagamo z
zbirnikom (assembler). Zbirnik (tudi zbirni jezik) je zbirka mnemonik za vsak ukaz, ki ga
procesor razume. Tako se npr. sledec¢i program

LDI RO,1
ouT 5,R0

prevede na isto zaporedje bytov (zaporedje generira racunalniski program iz izvorne
kode) kot prej 0x01E005B8. Kljub temu je zgornjo kodo lazje razumeti. Ukaz LDI je
kratica za Load Immediate. To pomeni, da bomo dani register RO napolnili z vrednostjo 1.
Registre lahko razumemo kot delovne spremenljivke procesorja. Drugi ukaz OUT pa
pomeni, da bomo na dano lokacijo 5 (Atmel tudi te lokacije imenuje registri, zato lahko
prihaja do ob¢asne zmede) zapisali vrednost registra R0. Da bi polno razumeli ta ukaz,
moramo vedeti, kaj se nahaja na tej lokaciji. V nasem primeru se tam nahaja register
PORTRB, ki definira, kaksne vrednosti bomo imeli na izhodih od PB0O do PB7.

Kdor je vajen programiranja, se bo morda vprasal, zakaj nismo direktno na lokacijo 5

vpisali vrednosti 1 z ukazom
ouT 5,1

Izkaze se, da takega ukaza ni v naboru. Vidimo torej, da smo za razliko od klasi¢nih
programov pri zbirniku omejeni na nabor argumentov, ki jih lahko podamo posameznemu
ukazu.
Sicer pa je tudi programiranje v zbirniku precej nehvalezno opravilo (ki pa je véasih
nujno potrebno), zato si raje pomagamo s kaksnim visjim programskim jezikom. Za
mikrokontrolerje najveckrat uporabimo jezik C (navadni, ne kaksne njegove izpeljanke
kot sta C++ in C#). Tako bi se isto zaporedje v C zapisalo

PORTB=1; .

Model semaforja

Za zacetek bomo nas mikrokontroler povezali tako, da bo deloval kot semafor. Rdeco lu¢
bomo povezali na PB0O, rumeno na PB1 in zeleno na PB2. Stanje na izhodu definiramo z
registrom PORTB. Register DDRB pa nam doloc¢a, ali je dolo¢ena povezava vhod ali izhod.
V mikorkontroler bomo zapisali sledeci program:

/* PORTB, DDRB in ostali so definirani tu */

#include <avr/io.h>

/* potrebujemo za _delay ms */

#include <util/delay.h>

int main() {
/* n bo Stel sekunde od za?etka cikla */
int n;
/* PB2, PB1l in PB0 bodo uporabljeni kot izhod, ostali PB kot vhod */
DDRB= (1<<PB2) | (1<<PB1) | (1<<PBO) ;
PORTB=0;
/* Poganjamo v nedogled */
while (1) {
/* cikel naj traja 2 minuti */
for (n=0; n<120; n++) {
/* Na za?etku prizgemo rde?o 1lu?*/
/*(in izklopimo rumeno iz prejdnjega cikla) */
if (n==0) {
PORTB&=~ (1<<PB1) ;

PORTB | =1<<PB0;

/* po eni minuti $e rumeno */
if (n==60) PORTB|=1<<PBl;
/* po dveh sekundah izklopimo rde?o in rumeno in */
/* vklopimo zeleno */
if (n==62) {
PORTB&=~ ((1<<PB1) | (1<<PBO0)) ;

PORTB | =1<<PB2;

/* zadnjih 5s vklopimo rumeno */
if (n==115) {
PORTB&=~ (1<<PB2) ;
PORTB | =1<<PB1;
}
/* po?akamo 1ls */

_delay_ms (1000) ;

Tipka za interventna vozila

Naslednji program bo sluzil kot prikaz branja vhoda. Na PB3 bomo priklopili tipko za
interventna vozila, ki bo na semaforju nemudoma prizgala rdeco lu¢ in omogocila prehod
interventnim vozilom. Nekako intuitivno bi bilo pri¢akovati, da bomo stanje na PB3
prebrali z registra PORTB. Vendar so se Atmelovi inZenirji odlo¢ili drugace. Vrednosti
vhodov beremo na registru PINB, PORTB pa sluzi za morebitno vezavo vhodov z visokim
nivojem preko upornika (pull-up resistor). Dodali bomo sledeco vrstico na zacetek zanke

/* ?e je pritisnjena tipka, za?ni cikel na novo (z rde?o) */
if (! (PINB&(1<<PB3))) n=0;
poleg tega pa bomo PORTB inicializirali na

PORTB=1<<PB3;

Preveri delovanje semaforja, poisc¢i napako in jo odpravi. Opisi spremembo.

Koliko c¢asa sveti zelena lu¢? Skrajsaj ta ¢as na 30s. Opisi spremembo.

