
Vaja 7: Avtomatizacija zajema meritev v sistemu

Arduino

Matej Bažec

8. januar 2019

Povzetek

Na primeru razvojne platforme Arduino bomo spoznali primer avtomatič-
nega zajema meritev. Najprej se bomo podrobneje seznanili z okoljem Arduino,
preko katerega bomo poskušali predstaviti delovanje mikrokontrolerjev in logiko,
ki stoji za njimi. Seznanili se bomo tudi z nekaj senzorji in z njimi bomo
poskušali napraviti nekaj preprostih sistemov.

1 Platforma Arduino

Arduino je razvojna platforma, ki močno poenostavi programiranje mikrokontroler-
jev. Fizično je sestavljena iz mikrokontorlerja (MCU - microcontroller unit) teme-
lječega na arhitekturi AVR (največkrat sta to ATmega 328p in ATmega 2560) in
komunikacijskega modula, ki skrbi za prenos serijske UART komunikacije preko USB
vodila med mikrokontrolerjem in računalnikom. Preko tega kanala poteka izmenjava
sporočil in programiranje Arduina. Ni pa ta povezava nujna za delovanje platforme.

Poleg same fizične konstrukcije sodi k Arduinu tudi programski del t. i. boo-
tloader. To je manǰsi program, ki se požene ob zagonu Arduina. Njegova edina
naloga je, da prenese morebitni program na Arduino. Če tega ni, požene že vnešen
program. Slednje se zgodi vedno, ko je Arduino izklopljen od računalnika.

K sistemu Arduino sodi tudi integrirano razvojno okolje. To pa je program, ki
teče na računalniku. V njem lahko pǐsemo kodo, jo prevajamo in nalagamo v MCU.
Poleg tega skrbi še za knjigovodstvo sistemskih in uporabnǐskih knjižnic.

1.1 Delovanje mikrokontrolerja

Mikrokontroler deluje podobno kot vsak računalnik. Izvaja dan program, ki je vpi-
san v njegov programski del spomina. V računalnǐskem smislu je precej omejen
(tipično ima 16MHz delovnega takta, 32MB programskega spomina, 2kB delov-
nega spomina). Njegova prednost pa so direkten in poln dostop do vseh svojih
vhodov/izhodov in popolna kontrola nad izvajanjem programa. To nam mogoča
direktno branje in pošiljanje električnih signalov, ki so lahko digitalni ali analogni.
Program se izvaja sekvenčno z izjemami prekinitev (interrupt), nad katerimi pa
imamo popoln nadzor. To nam omogoča odziv v realnem času, kar je pri meritvah
pomembno.

Stanje na vhodu preberemo tako, da preberemo stanje ustreznega registra (npr.
PINB). Na podoben način postavimo stanje na izhodu s pisanjem v ustrezni register
(npr. PORTB). Večini priključkov (pinov) v MCU lahko programsko določimo, ali
bodo vhodni ali izhodni. To storimo tako, da vpǐsemo dano vrednost v ustrezen
register (npr. DDRB). Pini so grupirani v skupine po 8 (izjemoma tudi manj), tako
da z enim registrom naslavljamo do 8 pinov.

Tako npr. izgleda program, ki določi, da bosta pina PB0 in PB1 vhodna, PB2
pa izhodni. Vrednost na slednjem bo 5V le takrat, ko bosta oba PB0 in PB1 na
visokem nivoju, sicer pa bo 0. Besedilo za podpičjem so komentarji.

1



ldi r24 , 0x4 ;0x4 pomeni tretji bit (PB2) je 1, ostali 0

out 0x04 , r24 ;0x04 je naslov registra PORTB

sbis 0x03, 0 ;0x03 je naslov registra PINB. Začetek zanke.

rjmp .+8 ;skok na brisanje bita - ukaz cbi

sbis 0x03, 1 ;0x03 je naslov registra PINB

rjmp .+4 ;skok na brisanje bita - ukaz cbi

sbi 0x05, 2 ;0x05 je naslov registra PORTB

rjmp .-12 ;skok na začetek zanke

cbi 0x05, 2 ;0x05 je naslov registra PORTB

rjmp .-16 ;skok na začetek zanke

Program je v zbirniku (assembler) v (namenoma) precej surovi obliki. Po navadi si
pomagamo z oznakami (label) pri skokih in preddefiniranimi konstantami (pǐsemo
PINB namesto 0x03). Kljub temu, je pisanje programa v zbirniku precej neprijetno
in se ga z izjemo kritičnih delov izogibamo.

Zato se raje poslužujemo vǐsjih programskih jezikov, največkrat C. Isti program
bi tako zgledal v C (z uporabo knjižnice avr-libc).

#include <avr/io.h>

int main () {

DDRB=1<<PB2;

while (1){

if (PINB&(1<<PB0) && PINB&(1<<PB1)) PORTB|=1<<PB2;

else PORTB&=~(1<<PB2);

}

}

1.2 Programiranje MCU v okolju Arduino

Okolje Arduino nam programiranje še naprej poenostavi. Pri Arduinu so namreč
pini razvrščeni po vrstnem redu. Zato nam ni treba vedeti v kateri skupini ležijo.
Tako npr. pinom PB0, PB1 in PB2 ustrezajo zaporedne številke 8, 9 in 10. Isti
program v Arduinu bi izgledal tako.

void setup() {

pinMode(8,INPUT);

pinMode(9,INPUT);

pinMode(10,OUTPUT);

}

void loop() {

if (digitalRead(8) && digitalRead(9)) digitalWrite(10, HIGH);

else digitalWrite(10,LOW);

}

Program je napisan v C++. Tisti, ki poznate klasični C++, boste opazili, da manj-
kajo ustrezni headerji (namenoma se izogibam prevoda v smislu vzglavje ali kaj
podobnega), funkcija main, konstante niso nikjer definirane ... To je zato, ker je
main že vključen v Arduinovo sistemsko knjižnico, od koder kliče funkciji setup in
loop. Tudi Arduinovi sistemski headerji so avtomatično vključeni, zato so neka-
tere konstante (npr. INPUT) že definirane. Seveda imajo te poenostavitve svojo
ceno. Program zaradi uporabe knjižnic teče bistveno počasneje, kot bi z direktnim
naslavljanjem.

Kot vidimo iz zgornjega primera, ima vsak Arduino program dve funkciji tipa
void brez argumentov. To sta setup in loop. Kot že imeni nakazujeta, v funkciji
setup definiramo osnovne nastavitve in inicializiramo morebitne podsisteme. Ta
funkicija se izvede le enkrat in sicer pri zagonu MCU. Po drugi strani, funkcija loop

2



teče v nedogled. Ko so vsi ukazi izvedeni, jo sistem kliče ponovno. Obe funkciji
morata biti definirani, sta pa lahko prazni.

2 Senzorski moduli

Senzorje lahko na MCU priklopimo direktno, ali pa komuniciramo z nekim vmesni-
kom, ki skrbi za pravilno odčitavanje senzorja. Seveda moramo v prvem primeru
sami poskrbeti, da bo senzor deloval v pravilnem režimu, pa tudi merjeno količino
si moramo sami preračunati iz dobljene napetosti. Prikazali bomo delovanje v obeh
načinih na primeru nekaj izbranih senzorjev, ki so primerno zapakirani prav za di-
rektno uporabo v okolju Arduino.

2.1 Merjenje svetlosti

Modul za merjenje svetlosti deluje s pomočjo svetlobno odvisnega upornika (kar je
ponesrečen prevod za light dependent resistor - LDR). Ta ima lahko zelo visoko
upornost v temi (do 1MΩ) do zelo nizke (nekaj ohmov) pri močni osvetljenosti. Če
ga priključimo zaporedno z znanim upornikom lahko s pomočjo napetostnega delil-
nika preračunamo izmerjeno napetost v upornost LDR-ja. Zato moramo pomeriti
napetost analogno preko ADC-ja (analogno digitalnega pretvornika). Zato moramo
priklopiti signalni pin na modulu z enim od analognih pinov na Arduinu. Primer
programa za ta senzor je v imeniku ”fotorezistor”.

Primer je zelo preprost način, kako beremo analogne signale. Signal fizično pri-
klopimo na enega od analognih vhodov, ki jih prepoznamo tako, da imajo črko
A v imenu (v našem primeru A5). Nato analogni signal preberemo s funkcijo
analogRead(A5). Analogno digitalni pretvornik (ADC) nam pretvori napetost med
0 in 5V na vhodu na sorazmerno celoštevilčno vrednost med 0 in 1023 (ADC je 10-
bitni), pri čemer predstavlja prvi 0, drugi pa 5V. Če želimo to vrednost pretvoriti v
realno število, ki predstavlja volte, moramo torej pomnožiti s 5 in deliti s 1023.

Na tem primeru se bomo seznanili tudi z objektom Serial. To je objekt, preko
katerega poteka serijska komunikacija preko protokola UART. V Arduinu je pred-
definiran, zato ga ni treba posebej deklarirati. V naših primerih bomo uporabljali
tri metode: begin, print in println. S prvim inicializiramo UART podsistem in
nastavimo baudrate (tega se niti ne upam prevesti). Z drugima dvema pa izpisujemo
besedilo, pri čemer println na koncu teksta preide v novo vrstico.

Funkcija delay ustavi itvajanje programa za določeno število milisekund.

2.2 Senzor bližine

Modul za merjenje bližine deluje na principu odboja ultrazvočnega valovanja. Če
želimo izmeriti razdaljo, postavimo pin Trig na 5V za kratek čas (npr. 10µs). Ko
postavimo Trig nazaj na 0V, bo modul postavil pin Echo na 5V in oddal kratek
ultrazvočni signal frekvence 40kHz in dolžine 8 period. Ta se bo odbil od ovire
in pripotoval na mikrofon na modulu. Ko bo modul zaznal odbit signal, bo vr-
nil pin Echo na 0V. Če poznamo hitrost zvoka (343m/s), lahko iz časa potovanja
preračunamo razdaljo.

Primer ne uporablja nobene knjižnice, zato moramo vse implementirati sami.
Pin, ki ga bomo povezali s Trig pinom na modulu, bomo definirali kot izhodni
(OUTPUT). Drugi pin, ki ga bomo povezali z Echo, pa kot vhodni (INPUT). Za ta
namen bomo uporabili funkcijo pinMode. Na prožilni pin bomo pisali s funk-
cijo digitalWrite. Funkcijo delayMicroseconds bomo uporabili za čakanje 10µs.
Dolžino trajanja pa bomo izmerili s funkcijo pulseIn.

3



2.3 Temperaturni senzor

Modul za merjenje temperature uporablja Dallasov DS18B20 senzor. Ta senzor že
sam pretvori temperaturo v digitalno obliko in jo odda preko onewire komunikacij-
skega protokola. Onewire je dokaj pogost protokol, ni pa tako popularen, da bi bil že
vnaprej vključen v Arduinovo knjižnico. Zato moramo dodati v imenik libraries

knjižnico onewire, ki nam definira header OneWire.h, v katerem je definiran razred
OneWire. MCU, ki jih uporablja Arduino, nimajo vgrajenega onewire protokola
hardversko (za razliko od npr. UART-a), zato je treba protokol implementirati z
direktnim branjem ozirom pisanjem na ustrezni pin. Takemu pristopu pravimo v
žargonu bitbanging.

Da si olaǰsamo branje temperature s senzorja uporabimo še knjižnico
dallas, ki implicitno uporablja še knjižnico adafruit. Ta nam definira razred
DallasTemperature. Objekti tega tipa direktno berejo s senzorja temperaturo preko
metod requestTemperatures in getTempCByIndex. Prva prebere temperaturo in
jo shrani, druga pa pretvori shranjeno vrednost v stopinje celzija.

2.4 Senzor temperature in vlage

Ta modul vsebuje senzor DHT11. Ta senzor je spet digitalni, tako da beremo di-
rektno vrednosti v digitalni obliki. Senzor uporablja svoj lasten protokol (ki je
sicer precej podoben onewire), za katerega pa ne rabimo skrbeti, saj lahko upo-
rabimo knjižnico dht. Ta nam definira header DHT.h, preko njega definiramo
objekt razreda DHT. Objekt inicializiramo z metodo begin, temperaturo beremo
z readTemperature (v stopinjah celzija), vlago pa z readHumidity (v odstotkih
relativne vlažnosti). V primeru napake, funkciji vrneta Nan (not a number).

2.5 Senzor temperature in tlaka

Ta modul uporablja zelo natančen senzor BMP280, ki je digitalni. komunicira lahko
preko dveh standardnih protokolov: SPI in I²C (Atmel/Microchip uporablja oznako
TWI zaradi licenčnih razlogov). Knjižnica bmp280 omogoča komunikacijo s senzor-
jem na tri načine, ki se jih določi ob definiciji objekta razreda Adafruit_BMP280:
hardverski I²C (konstruktor kličemo brez argumentov), hardverski SPI (en argument
- CS pin) in softverski SPI (štirje argumenti).

Surov signal je precej neobdelan in je potreben preceǰsnje računske obdelave,
vključno z upoštevanjem kalibracijskih parametrov. Na srečo je preračunavanje
skrito v knjižnici. Tako lahko do temperature in tlaka dostopamo s preprostim
klicem metod readTemperature (v stopinjah celzija) in readPressure (v Pa).

2.6 Mikrofon

Modul za merjenje zvoka je sestavljen iz mikrofona, ojačevalca in diskriminatorja.
Lahko beremo direktno analogno vrednost na mikrofonu, ali pa beremo digitalno
vrednost na diskriminatorju. Ta bo dal 0, če bo nivo zvoka pod dano vrednostjo, in
1, če bo nad njo. Vrednost lahko mehansko nastavimo z vijakom na potenciometru.

V funkciji setup najprej definiramo oba pina (analognega in digitalnega) kot
vhoda s funkcijo pinMode (to sicer ni nujno potrebno, ker je privzeta vrednost na pi-
nih INPUT). analogRead smo že srečali pri modulu za merjenje svetlosti, digitalRead
pa lahko vrne le vrednosti 0 oziroma 1.

3 Naloge

Na vajah vam bo asistent določil, katero od omenjenih vaj naredite doma. Nalogo
prinesite na naslednjih vajah, kjer jo boste predstavili sošolcem.

4



3.1 Naloga 1

S pomočjo modulov za merjenje bližine in aktivnega zvočnika naredite napravo, ki
bo zapiskala vsakič, ko bo zaznala objekt na razdalji manǰsi od 25cm.

3.2 Naloga 2

S pomočjo modulov za merjenje temperature in vlage in releja naredite napravo ter
ventilatorja naredite napravo, ki bovključila ventilator vsakič, ko bo temperatura
presegla 26°C, ali ko bo relativna vlažnost presegla 80%.

3.3 Naloga 3

Povežite modula za merjenje temperature in dvobarvno diodo tako, da bo svetila
pod 22°C zeleno, do 25°C rumeno, do 28°C oranžno in nad tem rdeče.

3.4 Naloga 4

Isto kot naloga 3, le da uporabite senzor za tlak in temperaturo za merjenj tempe-
rature.

3.5 Naloga 5

Napravite model avtomatične žarnice. Ko bo na svetlobnem senzorju majhna osve-
tlitev, prižgite diodo.

3.6 Naloga 6

S pomočjo modula za merjenje zvoka in modula KY-027 napravite napravo, ki bo
zasvetila vsakič, ko bo dan nivo hrupa presežen.

3.7 Dodatne naloge

Če želite, lahko uporabite kakšen drugi modul iz istega kompleta, ali predlagate svoj
načrt.

Literatura

[1] Referenčna dokumentacija za Arduino. https://www.arduino.cc/reference/

en/.

[2] TkkrLabova spletna dokumentacija. https://tkkrlab.nl/wiki/Arduino_37_

sensors.

[3] Uporabljeni primeri in knjižnice. http://vaje.fpp.uni-lj.si/tm/arduino.

tar.bz2.

5

https://www.arduino.cc/reference/en/
https://www.arduino.cc/reference/en/
https://tkkrlab.nl/wiki/Arduino_37_sensors
https://tkkrlab.nl/wiki/Arduino_37_sensors
http://vaje.fpp.uni-lj.si/tm/arduino.tar.bz2
http://vaje.fpp.uni-lj.si/tm/arduino.tar.bz2

	Platforma Arduino
	Delovanje mikrokontrolerja
	Programiranje MCU v okolju Arduino

	Senzorski moduli
	Merjenje svetlosti
	Senzor bližine
	Temperaturni senzor
	Senzor temperature in vlage
	Senzor temperature in tlaka
	Mikrofon

	Naloge
	Naloga 1
	Naloga 2
	Naloga 3
	Naloga 4
	Naloga 5
	Naloga 6
	Dodatne naloge


